

few experimental applications have actually been per-
formed: A single known-plaintext experimentation for a
full DES cipher has been performed in [5] and, until
recently, remained the only practical test, to our knowledge.

However, recent technological advances have made the
required computing power reachable, as is witnessed by a
set of 21 experiments for Matsui’s approximation [2], [3],
using the idle time of 18 Intel Pentium III MMX, capable of
performing an attack in 4.32 days.

Based on our fast DES implementation, we propose an
FPGA implementation of Matsui’s attack. It recovers 12 + 1
key bits in about 2.3 hours working with eight FPGAs. (We
carried out our experiments on VIRTEX1000 bg560-4.)

In terms of computation time, Knudsen’s attack is better
than Matsui’s. Nevertheless, according to the number of
plaintext/ciphertext pairs needed and the number of secret
key bits found, Matsui’s attack gives better results.1 In
addition, Matsui’s is a more realistic attack compared to
Knudsen’s attack due to the known-plaintext context. Our
solution is very useful to perform practical tests, allowing a
comparison with theoretical estimations. We believe that
our implementations are the fastest implementations of
Matsui’s linear cryptanalysis known so far.

The paper is organized as follows: Section 2 describes the
FPGA technology used, the synthesis/implementation
tools, and our FPGA board; Section 3 recalls the Data
Encryption Standard (DES); Section 4 refers to the best
previous known implementations by Xilinx; Section 5
describes our two proposals to improve FPGA implementa-
tions and compares them with previous designs; before
explaining our linear cryptanalysis design, Section 6 recalls
the basic principles of Matsui’s linear cryptanalysis; Section
7 describes our FPGA implementation of Matsui’s linear
cryptanalysis; finally, Section 8 summarizes the results we
obtained on a set of 71 practical attacks.

2 HARDWARE DESCRIPTION

In this section, we briefly describe the structure of a VIRTEX
FPGA as well as the synthesis and implementation tools
that were used to obtain our results.

2.1 Configurable Logic Blocks (CLBs)

The basic building block of the VIRTEX logic block is the
logic cell (LC). An LC includes a 4-input function generator,
carry logic, and a storage element. The output from the
function generator in each LC drives both the CLB output
and the D input of the flip-flop. Each VIRTEX CLB contains
four LC’s, organized in two similar slices. Fig. 1 shows a
detailed view of a single slice. Virtex function generators are
implemented as 4-input look-up tables (LUTs). Besides its
operation as a function generator, each LUT can provide a
16 � 1-bit synchronous RAM. Furthermore, the two LUTs
within a slice can be combined to create a 16 � 2-bit or 32 �
1-bit synchronous RAM or a 16 � 1-bit dual port
synchronous RAM. The VIRTEX LUT can also provide a
16-bit shift register.

The storage elements in the VIRTEX slice can be
configured either as edge-triggered D-type flip-flops or as
level-sensitive latches. The D inputs can be driven either by
the function generators within the slice or directly from slice
inputs, bypassing function generators.

The F5 multiplexer in each slice combines the function

generator outputs. This combination provides either a

function generator that can implement any 5-input function,

a 4:1 multiplexer, or selected functions of up to nine bits.

Similarly, the F6 multiplexer combines the outputs of all

four function generators in the CLB by selecting one of the

F5-multiplexer outputs. This permits the implementation of

any 6-input function, an 8:1 multiplexer, or selected

functions up to 19 bits. The arithmetic logic also includes

an XOR gate that allows a 1-bit full adder to be

implemented within an LC. In addition, a dedicated AND

gate improves the efficiency of multiplier implementations.

Finally, VIRTEX FPGAs incorporate several large RAM

blocks. These complement the distributed LUT implemen-

tations of RAMs. Every block is a fully synchronous dual-

ported 4,096-bit RAM with independent control signals for

each port. The data widths of the two ports can be

configured independently.

2.2 Hardware Targets

For our implementations, we used VIRTEX, VIRTEXE, and

VIRTEXII technologies. We chose these technologies in

order to allow relevant comparisons with the best-known

FPGA implementations of DES. In this paper, we compare

the number of LUTs, registers, and slices used. We also

evaluate the delays and frequencies thanks to our imple-

mentation tools (post place-and-route frequencies). The

synthesis was performed with FPGA Express 3.6.1

(SYNOPSYS) and the implementation with XILINX ISE-4.

Our circuits were described using VHDL.
Practical experiments were carried out on eight

Virtex1000BG560-4 boards that we developed within DICE
(the UCL Microelectronics Laboratory, http://www.dice.
ucl.ac.be). One board is composed of a control FPGA (FLEX

2 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2003

1. We do not speak about the third Knudsen’s chosen-plaintext attack in
[1], which is the actual best found chosen-plaintext attack.

Fig. 1. The VIRTEX slice.

10K30) and a VIRTEX1000 FPGA (counts 6,144 CLBs and 32
dual access RAMs of 4,096 bits) associated with several
processors (ARM and PIC) and fast extern memories. The
board has multiple compatible PC interfaces (PCI, USB).
Our simulations used a PCI communication. The cost of one
FPGA board is roughly $3,500. Fig. 2 represents the block
scheme of the board and Fig. 3 is a picture of it.

3 THE DES ALGORITHM

In 1977, the Data Encryption Standard (DES) algorithm was
adopted as a Federal Information Processing Standard for
unclassified government communication. It is still largely in
use. DES [11] encrypts 64-bit blocks with a 64-bit key, only
56 bits of which are used. The other 8 bits are parity bits for
each byte. The algorithm has 16 rounds.

For the enciphering calculation, the plaintext is first
permuted by a fixed permutation IP. The result is next split
into the 32 left bits and the 32 right bits, respectively, L and
R. The R part is expanded to 48 bits with the E box by
doubling some R bits. Then, it performs a bitwise modulo 2
sum of the expanded R part and the 48-bit subkey Ki. The

result of the XOR function is sent to eight nonlinear S-boxes

(S). Each of them has six inputs bits and four outputs. The

result is then permuted in the box P. Finally, to obtain the R

part of the next round, a new modulo 2 sum is performed

between the P output and the R part of previous round (the

L part of current round). In the last round, no interchange of

the 16-round R and L is performed; the ciphertext is

calculated by applying the inverse of the initial permutation

IP to the result of the 16th round.
The secret key is expanded by the key schedule. The key

schedule calculation is first based on the 56-bit permutation

PC-1 whose output is split into 28-bit blocks C and D. Then,

C and D are left (or right for decryption) shifted once or

twice, depending on the index of the round. (For decryp-

tion, no right shift is performed in the first round.) The

48-bit subkey is obtained by a second permutation, denoted

PC-2. The DES algorithm is detailed in Fig. 4.

ROUVROY ET AL.: EFFICIENT USES OF FPGAS FOR IMPLEMENTATIONS OF DES AND ITS EXPERIMENTAL LINEAR CRYPTANALYSIS 3

Fig. 2. The block scheme of the board.

Fig. 3. Our final VIRTEX board.

4 XILINX IMPLEMENTATIONS

This section briefly summarizes the previous implementa-

tions of Xilinx and gives their final results. For thorough

information, please refer to [9], [14].
The first proposed solution is a full unrolled and

pipelined DES implementation. It pipelines the data

through 16 stages, putting registers after each encipher-

ing/key round. This increases the data rate hugely, but also

the logic requirement compared to a sequential design.
According to Fig. 4 and [14], the critical path through the

round is quite long. First, a multiplexer selects the correct

key bits depending on the encryptor/decryptor mode. The

selected key bits are XORed with the R part. The resulting

6-bit fields are used to address the S-boxes whose critical

path is one LUT followed by two multiplexer functions (F5

and F6). Finally, output bits from the S-boxes are XORed

with the L part. Fig. 5 details the critical path.
The first proposed way to reduce this critical path is to

combine the F6 function with the final XOR operator. The

resulting 4-bit input logic function that fits in an LUT and

eliminates the F6 delay. Another improvement is to

decouple the key from the enciphering calculation. This is

done with a precomputation of the key schedule. So, the

multiplexer selecting the key can be removed from the

critical path, putting registers after this multiplexer.
Xilinx also proposes a second implementation. To reach

higher data rates, one inserts a pipelined stage, respectively,

after the key XOR and after F5 functions. It results in a

3-stage pipeline per round and a 48-stage pipeline over the
cipher.

Nevertheless, after checking and simulating their avail-
able source code on the web, we found two errors. First,
they forgot to put a 1-stage pipeline after the XOR between
the key and R part. Actually, Xilinx implemented this
1-stage pipeline, but sent the XOR directly between the key
and R part into S-boxes, in place of the corresponding
registered value. They also forgot to register the key just
before the XOR function. Therefore, their critical path is
quite a bit longer. Finally, their solutions do not implement
a correct DES that can encrypt every cycle.

Table 1 summarizes their two pipelined designs where
we modify their mistakes and, therefore, their results.

5 PROPOSED FPGA DESIGNS

To be speed efficient, we propose designs that unroll the
16 DES rounds and pipeline them. In addition, we
implemented solutions that allow us to change the
plaintext, the key, and the encryption/decryption mode
on a cycle-by-cycle basis, with no dead cycle. As a result, we
can achieve very high data rates of encryption/decryption
with exactly the same interface as Xilinx.

All of our implementations are first based on new
mathematical representations of the DES algorithm. Indeed,
the original description of DES is not optimized for FPGA
implementation regarding the speed performance and the
number of LUTs used. An FPGA is based on slices
composed of two 4-bit LUTs (Look Up Tables) and two
1-bit registers. Therefore, an optimal way to reduce the
LUTs used is to regroup all the logical operations in order to
obtain a minimum number of blocks that take 4-bit inputs
and give 1-bit outputs. In addition, we have to note that all
permutation and expansion operations (typically, P, E, IP,

4 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2003

Fig. 5. Critical path of the DES design.

TABLE 1
Final Results of Xilinx Pipelined Implementations

Fig. 4. The DES algorithm.

IP-1, PC-1, and PC-2) do not require additional LUTs, but
only wire crossings and fanouts (pure routing). The next
subsections show how to optimize the logic used or how to
reduce the critical path.

5.1 First Solution

In [15], equivalent mathematical descriptions for DES are
proposed. Based on these transformations, we propose new
representations. First, we transform the round function of
the enciphering computation. This transformation has no
impact on the computed result of the round.

Fig. 6 shows a modified round representation, where we
move the E box and the XOR operation. This involves the
definition of a new function (like reduction) denoted R:

R ¼ E�1;

8x;RðEðxÞÞ ¼ x;

9y j EðRðyÞÞ 6¼ y:

ð1Þ

Now, if we change all the enciphering parts of DES (see
Fig. 4) with this modified round function and if we combine
the E and XOR block with XOR block of the previous
round, we get the architecture detailed in Fig. 7.

In this new arrangement of the DES structure, the first
and last rounds are quite different from intermediate ones.
Therefore, we obtain an irregular architecture. In addition,
we increase the number of E and R blocks, which does not
alter the number of LUTs consumed. We also keep exactly
the same number of S-boxes, which is the expensive part of
the architecture. Finally, the number of modulo two sum
operators is slightly increased by 32 additional 2-bit XOR
operators.2 We can directly conclude that this design
consumes more logic than Xilinx implementations.

The left part of Fig. 8 illustrates how the critical path, in
our solution, is hugely decreased. We only keep one S-box
operator and one XOR function.3 With this solution, we
obtain a 1-stage pipeline per round. Due to the irregular
structure of our design, we have to add an additional stage
in the first round. To be speed efficient for implementation
constraints, we also put a 2-stage pipeline, respectively, in
the input and in the output. As mentioned in the figure, first
and last registers are packed into IOBs. Therefore, we obtain
a 21-stage pipeline.

In the right part of Fig. 8,weput an extra pipelined stage in
each round in order to limit the critical path to only one S-box.
As a consequence, we get a 37-stage pipelined design.

Table 2 shows our 21-stage and 37-stage pipelined

results. Comparing to Table 1, our 21-stage gives better

results in terms of speed, but consumes slightly more

logical resources and registers. Concerning the 37-stage

pipeline, we again use more LUTs, but reduce the number

of registers needed. This is due to the fact that we only have

a 2-stage pipeline per round. In addition, this design uses

shift registers for the key schedule calculation. In Virtex

FPGAs, SRL16 cores can directly implement a 16-bit shift

register into one LUT. So, we finally use 892 extra LUTs for

shift registers.4

The reason why we have better speed results for the

37-stage pipeline is quite strange. Obviously, in its design,

Xilinx does not put registers into IOBs and an additional

pipelined stage before and after encryption. Without such

registers, the critical path is in the input and output paths. In

addition, to generate a data ready output signal, its proposed

design is a solution with a critical path corresponding to two

LUTs. It’s why they get a small work frequency.

5.2 Second Solution

Another solution is tomove theR andXOR of the right part of

the round into the leftXORoperator of theprevious round.As

a result, we obtain the architecture shown in Fig. 9.

ROUVROY ET AL.: EFFICIENT USES OF FPGAS FOR IMPLEMENTATIONS OF DES AND ITS EXPERIMENTAL LINEAR CRYPTANALYSIS 5

Fig. 6. Modified representation of one DES-round.

Fig. 7. First modified representation of the DES algorithm.

2. The design exactly counts 17� 32 2-bit XOR, 15� 48 3-bit XOR, and
1� 48 2-bit XOR.

3. E and R operators do not increase the critical path.
4. The corrected Xilinx implementation uses 903 LUTs for shift registers.

No accurate values are given in [9], [14].

As Fig. 9 underlines, we again obtain an irregular
architecture. First and last rounds are quite different from
intermediate rounds. We also keep exactly the same number
of S-boxes as our precedent design. But, we really decrease
the number of modulo two sum operators. We spare 15� 32
2-bit XOR5 and can directly conclude that this design
consumes less logic than Xilinx implementations.

Fig. 10 gives more details about the initial round of our
design.

Table 3 summarizes our 21-stage and 37-stage pipelined
results. Comparing to Table 1, our 21-stage gives better
results in terms of speed and logical resources. Never-
theless, it consumes slightly more registers. For the 37-stage
pipeline, we again use fewer LUTs and also reduce the
number of registers needed. This is due to the fact that we
only have a 2-stage pipeline per round. In addition, this
design uses shift registers for the key schedule calculation.
So, we finally use 996 extra LUT’s for shift registers.6

To conclude, we propose efficient and different solutions
in terms of space and data rate for the hardware
implemenation of DES. Depending on environment con-
straints, we really believe that one of our designs should be
well appropriate. Especially, our second proposal is very
interesting in terms of speed, LUTs used, and registers. For
high ratio Throughput=Area, the second 37-stage pipelined
solution is very efficient. Table 4 compares ratio
Throughput=Area between 48-stage Xilinx implementation
and our second 37-stage implementation. We directly see a
significant improvement: Our design is almost two times
better than Xilinx one in term of ratio Throughput=Area.

6 LINEAR CRYPTANALYSIS

This section is a brief reminder of Matsui’s linear
cryptanalysis [4], [5], [6] before explaining the resulting
VHDL design. Linear cryptanalysis is an attack based on the
existence of some unbalanced linear relationship between

inputs and outputs of a reduced-round version of the target

encryption scheme. In the case of DES, Matsui used the

relationship

PL½15� � PH ½7; 18; 24; 29� � CL½7; 18; 24� ¼
K1½22� �K3½22� �K4½44� �K5½22�

�K7½22� �K8½44� �K9½22�
�K11½22� �K12½44� �K13½22�;

ð2Þ

where X½7; 18; 24; 29� :¼ X½7� �X½18� �X½24� �X½29�. Basi-
cally, this relationship means that the exclusive-or of some

well-chosen bits of the plaintext (namely, the seventh, 18th,

24th, 29th bits of its high-order part) and some well-chosen

bits of the ciphertext are equal to the exclusive-or of some

well-chosen secret bits of the key with probability different

from 1
2 .

6 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2003

TABLE 2
Final Results of Our First Implementations

Fig. 9. Second modified representation of the DES algorithm.

Fig. 8. Pipelining our first solutions.

5. The design exactly counts 14� 48 4-bit XOR, 1� 48 3-bit XOR, 1� 48
2-bit XOR, 1� 32 3-bit XOR, and 1� 32 2-bit XOR.

6. The corrected Xilinx implementation uses 903 LUTs for shift registers.
No accurate values are given in [14], [9].

We can easily calculate its dual, obtained by reversing
the expression

PL½7; 18; 24� � CL½15� � CH ½7; 18; 24; 29� ¼
K2½22� �K3½44� �K4½22� �K6½22�

�K7½44� �K8½22� �K10½22�
�K11½44� �K12½22� �K14½22�:

ð3Þ

Those characteristics are the best linear approximations
of 14-round DES cipher. They are satisfied with probability
p ¼ 1

2 � 1:19� 2�21.
Expression (2) is then extended to the full 16 rounds by

adding two nonlinear round functions, respectively, in the
first and 16th rounds (we will leave the second relationship
aside in this discussion since it is the first one’s dual):

PL½7; 18; 24; 29� � PH ½15� � F1ðPL;K1Þ½15�
�CH ½7; 18; 24� � F16ðCL;K16Þ½7; 18; 24� ¼

K2½22� �K4½22� �K5½44� �K6½22�
�K8½22� �K9½44� �K10½22� �K12½22�

�K13½44� �K14½22�;

ð4Þ

where F1ðPL;K1Þ denotes the first round function. This
relationship keeps exactly the same probability as (2). In
fact, only 6 bits of K1 (resp. K16) influence the value of
F1ðPL;K1Þ½15� (resp. F16ðCL;K16Þ½7; 18; 24�).

If we compute this equation for all 4,096 possibilities of
the key (K1 andK16), a large number of plaintexts, knowing
that only one of these 4,096 keys is correct, we will find one
significative probability corresponding to the 12 correct key
bits. The following algorithm summarizes this idea.

.0. Algorithm

1. For each candidate (K
ðiÞ
1 jKðjÞ

16) (i ¼ 1; 2; . . . 64;
j ¼ 1; 2; . . . 64) of (K1jK16), let Tði;jÞ be the number
of plaintexts such that the left side of the (4) is equal
to zero.

2. Let Tðmaxi;maxjÞ be the maximal value, Tðmini;minjÞ the
minimal value of all Tði;jÞs, and N the number of
plaintexts/ciphertexts.

If jTðmaxi;maxjÞ � N
2 j > jTðmini;minjÞ � N

2 j, then adopt

the key candidate corresponding to Tðmaxi;maxjÞ.

If jTðmaxi;maxjÞ � N
2 j < jTðmini;minjÞ � N

2 j, then adopt

the key candidate corresponding to Tðmini;minjÞ.

An extra bit can be found thanks to (4). Indeed, 12 key

bits of K1 and K16 were found thanks to the previous

algorithm and we can derive the value of

K2½22� �K4½22� �K5½44� �K6½22� �K8½22� �K9½44�
�K10½22� �K12½22� �K13½44� �K14½22�

from the same experiments. It is therefore possible to

recover 12 + 1 bits of the key. The same treatment can be

applied to the dual equation (4), thus yielding a total of

26 bits. The remaining 30 unknown key bits have to be

searched exhaustively.
Let us have a look at the success rate of Matsui’s attack.

In [4], the following lemmas are proposed:

Lemma 1. Let N be the number of given random plaintexts and p

be the probability that (4) holds and assume jp� 1
2 j is

sufficiently small. Then, the success rate of the algorithm

depends on the bits involved in the equation and
ffiffiffiffiffi
N

p
jp� 1

2 j
only.

Generally speaking, it is not easy to calculate numerically

the accurate probability above. However, under a condition,

it can be possible as follows: In this case, we rewrite it for

Matsui’s attack on a full DES.

Lemma 2. With the same hypotheses as Lemma 1, let qði;jÞ be the

probability that the following equation holds for subkeys

ðKðiÞ
1 jKðjÞ

16 Þ and random variables X, Y:

F1ðX;K1Þ½15� � F16ðY ;K16Þ½7; 18; 24� ¼
F1ðX;K

ðiÞ
1 Þ½15� � F16ðY ;K

ðjÞ
16 Þ½7; 18; 24�;

ð5Þ

where K1 and K16 are the correct subkeys.
Then, if qði;jÞs are independent, the success rate of the

algorithm is

ROUVROY ET AL.: EFFICIENT USES OF FPGAS FOR IMPLEMENTATIONS OF DES AND ITS EXPERIMENTAL LINEAR CRYPTANALYSIS 7

Fig. 10. Pipelining our second solutions.

TABLE 3
Final Results of Our Second Implementations

TABLE 4
Comparisons with Xilinx Implementation of VIRTEXII

fx ¼ 1ffiffiffiffiffiffiffi
2�

p e
�x2

2 ; fy ¼
1ffiffiffiffiffiffiffi
2�

p e
�y2

2 ;

Z 1

x¼�2
ffiffiffi
N

p
jp�1

2j

Y
ði;jÞ

Z xþ4
ffiffiffi
N

p
ðp�1

2Þð1�qði;jÞÞ

�x�4
ffiffiffi
N

p
ðp�1

2Þqði;jÞ
fydy

0
@

1
Afxdx;

ð6Þ

where the product is taken over all subkey candidates except
ðK1jK16Þ.

We compute (6) to show the theoretical success prob-
ability of Matsui’s 14-round attack. (Due to the large (4,095)
number of factors involved, the equation could not be
computed exactly; therefore, we used an approximation.)
Results are shown in Table 5.

For information, we give the complexities of Matsui’s
linear attack on a full DES predicted by Knudsen.
Comparing with Table 6, our theoretical result seems to
be too pessimistic.

7 FPGA IMPLEMENTATION OF MATSUI’S ATTACK

As previously described, Matsui’s linear cryptanalysis
allows us to find 26 key bits with about 243 known-
plaintexts. We propose an FPGA implementation of
Matsui’s attack that permits recovering 12 + 1 key bits with
about 243 known-plaintexts. We did not use the second
relation to spare hardware resources and we decided to use
our second 21-stage pipelined DES, which is the fewer
resources consuming design. In order to increase speed
performances, we parallelized two of them so that we got a
data rate of two encryptions per cycle. We also modified
them in order to gain resources space: The key schedule
was simplified and the input and output registers were
removed.

Nevertheless, for a hardware implementation, the main

problem of this attack is the 212 counters needed to perform

the key guess. Knowing that about 24,000 LUTs are

available on our FPGA, the implementation of 212 paralle-

lized counters is much too expensive to be realistic (about

65,000 LUTs). (We have to keep a sufficient bits size, say

16 bits, for the conounters to have an efficient and feasible

implementation.)
This section will briefly introduce how we implement

Matsui’s linear cryptanalysis without 4,096 parallelized

counters in one FPGA board, keeping our very fast data

throughput. We do it with 4,096 RAM-based counters. (We

configure all the RAMs to have 8-bit address and 16-bit

data.) Fig. 11 shows architecture and underlines how we

took advantage of RAM blocks available in VIRTEX

technology to implement counters.
In practice, we need to implement 4,096 RAM based

counter values, with only 32 parallel access (with reading

and writing operations; we use dual access RAMs). There-

fore, this operation can be performed in 128 clock cycles.
According to Matsui’s algorithm (see Section 6), we have

to increment a counter (corresponding to Tði;jÞ for a key

candidate ðKðiÞ
1 jKðjÞ

16 Þ) each time the linear approximation

((4)) equals to 0 for this key. A naive application of this

scheme is obviously unfeasable (4,096 parallelized coun-

ters). Instead of incrementing the parallelized counters

every clock cycle, with a value of 0 or 1, we increment the

RAM counters every 128 cycles with a value between -128

and 128, corresponding to ðTði;jÞ � 2�128
2 Þ. Therefore, our

RAM counters directly represent the bias ðTði;jÞ � 2�N
2 Þ. The

“2”s, before times operations, correspond to the two

parallelized DES.

8 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2003

Fig. 11. Architecture of Matsui’s linear cryptanalysis.

TABLE 5
Success Rate of Matsui’s Attack on a Full DES

This is practically performed using a large serial/parallel
converter making the ciphertext bits involved in Matsui’s
linear approximation ((4)) available during 128 cycles.

By choosing the plaintext bits involved in the linear
approximation ((4)) such that they are fixed during the
same 128 clock cycles, we avoid the need of a serial/parallel
convertor for the plaintext bits. We also avoid the use of
XOR operators between plaintext and ciphertext parts.
Therefore, we spare a lot of hardware resources. We just
need an n-delay shift register (SR block) to synchronize the
design.

To generate plaintext bits, we use an LFSR of 57 bits and
a 6-bit counter (the remaining bit is used for the two DES
parallelization). This counter controls the PL part used to
calculate F1½15�, varying every 128 cycles. Therefore, we
obtain 128 successive cycles where the PL part of
F1ðPL;K1Þ½15� is constant.

Knowing 256 parallelized results of

PL½7; 18; 24; 29� � PH ½15� � CH ½7; 18; 24�
� F16ðCL;K16Þ½7; 18; 24�;

we have to count the number of bits equal to 0 and subtract
128, thanks to the previous comment (we only store the
bias). We obtain 9-bit result, called bias in Fig. 11.
Depending on the 32 para l le l i zed va lues o f
F1ðPL;K1 þ iÞ½15�, we have to carry out a subtraction or
an addition between the 32 RAM values stored (in the
correct address) and the bias value. (We have i = from 0 to
31 and K1 equal to 0 or 1.)

Therefore, we get one Matsui’s attack implementation
that allows us to recover 12 + 1 secret key bits. Our
cryptanalysis design is based on a sequentialized access of
4,096 counters, without altering the encryption rate of two
DES per cycle. To analyze our experiments, the 4,096 RAMs
stored results are sent to the PC when one of them exceeds
the 16-bit RAM data size. In addition, the PC can send the
secret key to the FPGA board. This allows us to perform
very practical tests.

8 EXPERIMENTAL RESULTS

In this section, we give the results we got running Matsui’s
attack on eight Xilinx FPGAs (VIRTEX1000 bg560-4). We
carried out the experiments at a work frequency = 66.6 MHz
(¼ 226) (Because of the FPGA heat running at 66 MHz, we
do not carry experiments at higher frequency. It is why we
use our second 21-stage solution, which is the less resource
consuming design.). Therefore, we are able to compute 2�
226 equations per second. Using eight FPGA boards, 243

evaluations take less than 2.3 hours.
We performed tests with 71 different keys. Table 7

summarizes the experimental success rate of the attack for
various amounts N of chosen-plaintext/ciphertext pairs.

These experimental results suggest that Matsui’s theore-
tical analysis is quite good (slightly optimistic) (see Tables 5
and 6). Indeed, our results are very close to mathematical
estimations.

9 CONCLUSION

This paper deals with two new ideas for FPGA implemen-
tations of DES leading to four improved practical appro-
priate implementations. All of them are very efficient in
terms of speed and/or resources needed. Then, this paper
presents the first known FPGA implementation of Matsui’s
linear cryptanalysis. The resulting attack is capable of
finding a 13-bit key in less than 2.3 hours, using eight FPGA
boards. In addition, it is worth noting that, with the new
Xilinx FPGA (Xilinx VIRTEX-II XC2V8000), we would be
able to carry out the same attack in about 1 hour, using only
one FPGA board. Therefore, in some applications, FPGAs
can be used as powerful cryptographic calculation tools.

REFERENCES

[1] L.R. Knudsen and J.E. Mathiassen, “A Chosen-Plaintext Linear
Attack on DES,” Proc. Int’l Symp. Foundations of Software Eng. (FSE
’00), B. Schneier, ed., pp. 262-272, 2000.

[2] P. Junod, “Linear Cryptanalysis of DES,” Master’s thesis, Swiss
Inst. of Technology, 2000.

[3] P. Junod, “On the Complexity of Matsui’s Attack,” Proc. ACM
Symp. Applied Computing (SAC ’01), pp. 216-230, 2001.

[4] M. Matsui, “Linear Cryptanalysis Method for DES Cipher,” Proc.
Advances in Cryptology—EuroCrypt ’93, T. Helleseth, ed., pp. 386-
397, 1993.

[5] M. Matsui, “The First Experimental Cryptanalysis of the Data
Encryption Standard,” Y. Desmedt, ed., Proc. Advances in
Cryptology—Crypto ’94, pp. 1-11, 1994.

[6] F. Koeune, G. Rouvroy, F.-X. Standaert, J.-J. Quisquater, J.-P.
David, and J.-D. Legat, “An FPGA Implementation of the Linear
Cryptanalysis,” Proc. In’tl Conf. Field Programmable Logic and
Applications (FPL ’02), M. Glesner, P. Zipf, M. Renovell, eds.,
pp. 845-853, 2002.

[7] J.M. Rabaey, Digital Integrated Circuits. Prentice Hall, 1996.
[8] Xilinx, “Virtex 2.5V Field Programmable Gate Arrays Data Sheet,”

http://www.xilinx.com, year?
[9] Xilinx, V. Pasham, and S. Trimberger, “High-Speed DES and

Triple DES Encryptor/Decryptor,” http://www.xilinx.com/
xapp/xapp270.pdf, Aug. 2001.

[10] B. Schneier, Applied Cryptography, second ed. John Wiley & Sons,
1996.

[11] Nat’l Bureau of Standards, FIPS PUB 46, The Data Encryption
Standard, US Dept. of Commerce, Jan. 1977.

[12] FreeIP, http://www.free-ip.com/DES/index.html, year?
[13] C. Patterson, “High Performance DES Encryption in Virtex FPGAs

Using Jbits,” Proc. IEEE Symp. Field-Programmable Custom Comput-
ing Machines (FCCM ’01), 2000.

[14] S. Trimberger, R. Pang, and A. Singh, “A 12 Gbps DES Encryptor/
Decryptor Core in an FPGA,” Proc. Cryptographic Hardware and
Embedded Systems (CHES ’00), pp. 156-163, 2000.

[15] M. Davio, Y. Desmedt, M. Fossprez, R. Govaerts, J. Hulsbosch, P.
Neutjens, P. Piret, J.J. Quisquater, J. Vandewalle, and P. Wouters,
“Analytical Characteristics of the DES,” Proc. Advances in
Cryptology—Crypto ’83, D. Chaum, ed., pp. 171-202, 1983.

ROUVROY ET AL.: EFFICIENT USES OF FPGAS FOR IMPLEMENTATIONS OF DES AND ITS EXPERIMENTAL LINEAR CRYPTANALYSIS 9

TABLE 6
Knudsen’s Values of the Same Attack

TABLE 7
Experimental Success Rate (SR) of Matsui’s Attack

Gaël Rouvroy (S’02) began his engineering
studies in 1996 at the Université catholique de
Louvain (UCL, Belgium). In 2000, he made a 4-
month student exchange and joined the Uni-
versity of Virginia. In 2001, he received the MS
degree in electronics and mechanics engineer-
ing with the highest distinction from the Belgian
university. He is currently a PhD candidate at
UCL, in the UCL Crypto Group, where he is
involved in the research project TACTILS. He is

working on the analysis of cryptographic primitives, but also on efficient
speed and secure cipher FPGA implementations, under the supervision
of Professor Jean-Didier Legat and Jean-Jacques Quisquater. He is a
student member of the IEEE.

Francois-Xavier Standaert (S’O2) received the
electrical engineering degree with high distinc-
tion from the Université catholique de Louvain in
2001. He is currently a research assistant i the
Electrical Engineering Department of the same
university, where he is working toward the PhD
degree. He is a member of the UCL Crypto
Group and is involved in the research project
TACTILS (Tracage et Acces Conditionnel
Temps-reel d’Images par Lecteur Securise).

His research interests include digital design and FPGAs, cryptographic
hardware, block ciphers and side-channel analysis. He is a student
member of the IEEE.

Jean-Jacques Quisquater is a professor of
cryptography and multimedia security in the
Department of Electrical Engineering, University
of Louvain, Louvain-la-Neuve, Belgium, where
he is responsible, at least at the scientific level,
for many projects related to smart cards (proto-
cols, implementations, side-channels), to secure
protocols for communications, digital signatures,
payTV, protection of copyrights, and security
tools for electronic commerce. He was the main

designer for several coprocessors for powerful smart cards: CORSAIR
(Philips) and FAME (Philips). He holds 17 patents in the field of smart
cards. He is co-inventor of an identification cryptographic scheme, the
so-called GQ scheme. He is a member of the IEEE.

Jean-Didier Legat received the engineering
and PhD degrees in microelectronics from the
Université catholique de Louvain, Louvain-la-
Neuve, Belgium, in 1981 and 1987, respectively.
From 1987 to 1990, he was with Image
Recognition Integrated Systems (I.R.I.S.), a
new company specializing in optical character
recognition and automatic document proces-
sing. He was cofounder and vice-president of
I.R.I.S. In October 1990, he returned to the UCL

Microelectronics Laboratory. He is currently a professor in the Electrical
Engineering Department. His current interests are low power digital
circuits, reconfigurable architectures and design of embedded integrated
circuits in the area of artificial neural networks, digital signal processing,
computer vision, and pattern recognition. He has been an author or
coauthor of more than 110 publications in the field of microelectronics
and he is a member of the IEEE. He is currently chairman of the
Electrical Engineering Department of UCL.

. For more information on this or any computing topic, please visit
our Digital Library at http://computer.org/publications/dlib.

10 IEEE TRANSACTIONS ON COMPUTERS, VOL. 52, NO. 4, APRIL 2003

